CBSE Mathematics Set I Outside Delhi 2011

SelfStudy.in

Q5. If a matrix has 5 elements, write all possible orders it can have.

Answer: Since a matrix of order $m \times n$ has mn elements, hence here mn=5 so possible values are are m=1, n=5 or m=5 and n=1. All possible ordered pairs (m, n) of positive integers whose product is 5 are 1×5 and 5×1 .

Q6. Evaluate:
$$\int (ax + b)^3 dx$$

Answer: Let
$$I = \int (ax + b)^3 dx$$

Let
$$u = ax + b$$

Differentiation w.r.t. x, we get

$$\frac{du}{dx} = a + 0 \Rightarrow \frac{du}{dx} = \frac{a}{1}$$

$$\therefore dx = \frac{du}{a}$$

$$\therefore I = \int (u)^3 \cdot \frac{du}{a}$$

$$=\frac{1}{a}\int (u)^3 dt$$

$$=\frac{1}{a}\left(\frac{u^4}{4}\right)+c$$

$$= \frac{1}{4a} u^4 + c \Rightarrow \frac{1}{4a} (ax + b)^4 + c$$

Where c is constant of integration.

Q7. Evaluate:
$$\int \frac{dx}{\sqrt{1-x^2}}$$

Answer: Let
$$I = \int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

$$= [\sin^{-1} x]_0^1$$

$$= \sin^{-1}(1) - \sin^{-1}(0)$$

$$=\sin^{-1}\left(\sin\frac{\pi}{2}\right)-\sin^{-1}(0)$$

$$=\frac{\pi}{2}-0=\frac{\pi}{2}$$

CBSE Mathematics Set I Outside Delhi 2011

SelfStudy.in

Q8. Write the direction – cosines of the line joining the points (1, 0, 0) and (0, 1, 1).

Answer:

We know that direction cosines of line joining points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is given by

$$l = cos\alpha = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$
,

$$m=coseta=rac{y_2-y_1}{\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}}$$
 and

$$n = cos\gamma = \frac{z_2 - z_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

Therefore direction cosines of the line joining the points (1, 0, 0) and (0, 1, 1) are $\frac{-1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$.

Q9. Write the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

Answer:

Projection of \vec{a} on \vec{b} is $acos\theta$

We know $\vec{a} \cdot \vec{b} = abcos\theta$

Therefore $acos\theta = \frac{\vec{a}.\vec{b}}{b}$

Here
$$\vec{a} = \hat{i} - \hat{j}$$
 and $\vec{b} = \hat{i} + \hat{j}$

Now projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{0}{\sqrt{2}} = 0$

CBSE Mathematics Set I Outside Delhi 2011

SelfStudy.in

Q10. Write the vector equation of a line given by $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$.

Answer: The given line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$

We have standard equation of line as $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

On comparing we get $x_1=5$, $y_1=-4$, $z_1=6$ and a=3, b=7, c=2

Fixed point vector

$$\vec{a} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

$$=5\hat{i}-4\hat{j}+6\hat{k}$$

Direction vector

$$\vec{b} = a \hat{i} + b \hat{j} + c \hat{k}$$

$$= 3 \hat{\imath} + 7\hat{\jmath} + 2\hat{k}$$

∴ Vector equation of the given line is

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\vec{r} = (5\hat{\imath} - 4\hat{\jmath} + 6\hat{k}) + \lambda(3\hat{\imath} + 7\hat{\jmath} + 2\hat{k})$$