CBSE Physics Set I Delhi Board 2006

SelfStudy.in

Q14. The given graph shows the variation of charge q versus potential difference V for two capacitors C_1 and C_2 . The two capacitors have same plate separation but the plate area of C_2 is double than that of C_1 . Which of the lines in the graph correspond to C_1 and C_2 and why?

Answer: We know that q = CV comparing with y=mx, here m=C=tan θ , higher is the slope higher is the capacitance. and graph A has a larger slope than B, so the graph A shows higher capacitance.

Also,
$$C = \frac{\varepsilon_0 A}{d}$$
 i. e., $C \propto A$

As the plate area of C_2 is double of that of C_1 , so C_2 has a higher capacitance. Hence the line A of the graph corresponds to capacitor C_2 .

Q15. Two cells E1 and E2 in the given circuit diagram have an emf of 5 V and 9 V and internal resistance of 0.3 Ω and 1.2 Ω respectively. Calculate the value of current flowing through the resistance of 3 Ω .

Answer: Net emf = $E_2 - E_1 = 9 - 5 = 4V$

Total resistance =
$$0.3 + 1.2 + 4.5 + \frac{6 \times 3}{6+3} = 8 \Omega$$

Current through the circuit, $I=\frac{4}{8}=0.5~A$, Let i_1 and i_2 be the current in 6 and 3 Ω resistance respectively. Therefore $i_1+i_2=0.5$, as current remains same 0.5 in series with 4.5 Ω resistance. Now Potential difference in parallel resistance is same hence $6i_1=3i_2$ or $i_1=0.5i_2$, so $0.5i_2+i_2=0.5$ or $i_2=0.5/1.5=1/3~A$

CBSE Physics Set I Delhi Board 2006

SelfStudy.in

Q16. How is the mutual inductance of a pair of coils affected when:

- (I) Separation between the coils is increased?
- (II) The number of turns of each coil is increased?
- (III) A thin iron sheet is placed between the two coils, other factors remaining the same? Explain your answer in each case.

Answer:

- (I) When the separation between the two coils is increased, flux that is lines of force cutting the secondary decreases so the mutual inductance decreases.
- (II) Mutual inductance is proportional to the product of number of turns in coils (M $\propto N_1 N_2$) Hence Mutual inductance increases when the number of turns in each coil is increased,
- (III) Mutual inductance is proportional to the permeability M \propto permeability (μ). Iron sheet being ferromagnetic has higher permeability allows more lines of force (flux) to pass through , hence when an iron sheet is placed between the two coils the mutual inductance M increases.