Current

By current we mean flow of charge. The rate of flow of charge is defined as current i.e. i=dq/dt=q/t (ampere = coulomb/sec).

We have different types of conduction

- (1) Metallic conduction: Current flowing through a metallic conduction.
- (2) Electrolytic conduction: Current flowing through an electrolyte i.e. liquid
- (3) Gaseous conduction: discharge of electricity through gases.
- (4) Vacuum conduction: Flow of charge through vacuum.

Metallic conduction: To flow charge between two points we must always maintain a potential difference between those points.

Α

В

Let V = Potential difference between the points between A & B of the metallic conductor.

i = current flowing through the conductor.

Ohm's law: "At a constant temperature current flowing between two points of a conductor is proportional to potential difference between those points"

 $V \propto i$

$$V = Ri$$

Where R is constant of proportionality known as resistance of the conductor.

$$i = \frac{1}{R}V$$
$$y = mx, m = \frac{1}{R} = tan\theta$$

The reciprocal of the slow of the straight line gives resistance of the conductor.

Remark: Ohms law is valid only for metallic conduction.

For electrolytic conduction from the graph we find that as the potential difference increases θ decreases, $\tan\theta$ decreases and $1/\tan\theta$ =R increases

Current

Thus the resistance of an electrolyte increases with the increases in the applied potential difference.

For vacuum conduction:

From the graph we see that as the applied potential difference increases the value of θ also increases and $\tan\theta$ increases, $1/\tan\theta$ =R decreases.

Thus resistance decreases with the increase in potential difference.

For metallic conduction resistance of a conductor depends on

- (1) The temperature
- (2) Size i.e. length and diameter
- (3) Temperature: Resistance of a conductor increases with increase in temperature in a parabolic fashion and is given by

$$R_t = R_0(1 + \alpha t + \beta t^2 + \dots)$$

Where α , β ,... are constant of elements of the conductor.

Current

If temperature is not too large then β is very small (10⁻⁷) so βt^2 can be neglected compared to αt hence equation reduces to R_t = R_0 (1+ αt)

- (ii) At constant temperature resistance of a conductor
- (a) Increases with the length of the conductor $R \propto l$
- (b) Decreases with the increase in area of cross section

$$R \propto \frac{1}{A}$$

$$\therefore R \propto \frac{l}{A}$$

$$R = \rho \frac{l}{A}$$

Where ρ is a constant of proportionality and is known as resistivity or the specific resistance of the conductor.

$$\rho = \frac{RA}{l} = \frac{ohm \text{ m}^2}{\text{m}} = ohm \text{ m}$$

For good conductor ρ is of the order of 10^{-8} ohm m and for bad conductor 10^{+4} ohm m