Faraday's Laws Of Electromagnetic Induction

Faradays law of electromagnetic induction: Faraday from the experimental observations gave the following two laws for electromagnetic induction to find the value of emf induced across the circuit.

First law: The induced emf is proportional to the number of turns in the coil.

 $e \propto N \rightarrow (1)$ where N = number of turns in the coil.

Second law: The emf induced across the coil is proportional to the rate of change of flux through the coil.

Let ϕ_1 and ϕ_2 be the flux (the total no of magnetic lines of force passing perpendicularly) through the coil at an instant of time t & t + Δt respectively

:. Change in flux through the coil in time Δt : $\Delta \phi = \phi_2 - \phi_1$

$$\therefore \text{ The rate of change of flux through the coil} = \frac{\Delta \phi}{\Delta t}$$

$$e \propto \frac{\Delta \phi}{\Delta t} \rightarrow (2)$$

If the rate of change of flux through the coil is not uniform then

$$e \propto \frac{d\phi}{dt}$$
 where $\frac{d\phi}{dt}$ is rate of change of flux at an instant t

Combining first and second law : $e \propto N \frac{d\phi}{dt}$

$$e = KN \frac{\mathrm{d}\phi}{\mathrm{dt}}$$

Where K = constant of proportionality, by proper choice of unit i.e. if e is in volt and flux in tesla - m^2 then constant K = 1

$$e = N \frac{d\phi}{dt} \rightarrow (3)$$

Equation(3) can be more correctly written as

$$e = -N \frac{d\phi}{dt} \rightarrow (4)$$

The negative sign indicates that the direction of the induced emf is opposite to that of the cause.