JEE Main 2015 Mathematics

SelfStudy.in

21. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is

(1)
$$\frac{27}{4}$$

(2)18

$$(3)^{\frac{27}{2}}$$

(4)27

Answer:

Area=
$$2\frac{a^2}{e} = \frac{2a^2}{\sqrt{1-\frac{b^2}{a^2}}} = \frac{2\times 9}{\sqrt{1-\frac{5}{9}}} = \frac{18\times 3}{2} = 27$$

Alternative detail method:

We know that latus rectum to the ellipse passes through focus co-ordinate (ae, 0) laying on major axis.

$$\frac{x^2}{9} + \frac{y^2}{5} = 1, a^2 = 9, b^2 = 5,$$

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{5}{9}} = \frac{2}{3},$$

Finding co-ordinate (x_1, y_1) of the point of contact of tangent and latus rectum on the ellipse at first quadrant,

$$x_1 = ae = 3 \times \frac{2}{3} = 2$$

(latus rectum passing through focus). Here x_1 lies on $\frac{x^2}{9} + \frac{y^2}{5} = 1$

Here
$$x_1$$
 lies on $\frac{x^2}{9} + \frac{y^2}{5} = 1$

hence y_1 can be found as

$$\frac{4}{9} + \frac{{y_1}^2}{5} = 1$$

or
$$y_1^2 = 5 \times \left(1 - \frac{4}{9}\right) = \frac{25}{9}, y_1 = \frac{5}{3}$$

Therefore equation of tangent to ellipse at

$$(x_1, y_1) = \left(2, \frac{5}{3}\right)$$

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

$$or \frac{x \times 2}{9} + \frac{y \times \frac{5}{3}}{5} = 1$$

or
$$\frac{x}{9/2} + \frac{y}{3} = 1$$
,

hence X – axis intercept A(9/2,0), Y axis intercept of tangent B(0,3)

Therefore Area of the triangle formed by co-ordinate axes and tangent= $\frac{1}{2} \times \frac{9}{2} \times 3 = \frac{27}{4}$

Therefore total area of the quadrilateral =4 $\times \frac{27}{4}$ = 27

Correct option is (4) 27