JEE 2015 Physics

SelfStudy.in

16. In the given circuit, charge Q_2 on the 2 μ F capacitor changes as C is varied from 1μ F to 3μ F. Q_2 as a function of 'C' is given properly by : (figures are drawn schematically and are not to scale)

Answer:

In the given circuit $1\mu F$ and $2\mu F$ are parallel hence equivalent capacitance= $2+1=3\mu F$

Now C and 3µF are in series therefore equivalent capacitance= $\frac{3C}{3+C}$ therefore Charge $Q=\left(\frac{3C}{3+C}\right)E$ Hence potential difference across the combination 1µF and 2µF = $\frac{Q}{3}=\frac{CE}{3+C}$.

Now the charge of $2\mu F$ capacitor (say q) $a = \frac{2CE}{2}$

 $To \ find \ this \ in \ standard \ equation:$

$$\frac{q}{2E} = \frac{C}{3+C}$$
 or
$$\frac{q}{2E} = \frac{3+C-3}{3+C}$$
 or
$$\frac{q}{2E} = 1 - \frac{3}{3+C}$$
 or
$$q-2E = \frac{-6E}{3+C}$$
 or
$$q-2E)(C+3) = -6E$$
 This is comparable with standard equation
$$(y-\alpha)(x+\beta) < 0 \text{ which is hyperbola}$$
 Correct option (2)