
JEE 2015 Physics



SelfStudy.in

30. An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q₀ and then connected to the L and R as shown below:

If a student plots graphs of the square of maximum charge (Q² $_{Max}$) on the capacitor with time (t) for two different values L_1 and L_2 ($L_1 > L_2$) of L then which of the following represents this graph correctly? (Plots are schematic and not drawn to scale)

Answer: For discharge of capacitor through inductance and resistance (LCR circuit) emf equation

$$\frac{q}{c} = iR + L\frac{di}{dt} \rightarrow (1) \ i = \frac{dq}{dt} \ therefore \ \frac{q}{c} = R\frac{dq}{dt} + L\frac{d^2q}{dt^2} \rightarrow (1)$$

for maximum value of $q = Q_{max}$, $\frac{dq}{dt} = 0$

$$or \; \frac{Q_{max}}{C} = L \frac{d^2 Q_{max}}{dt^2} \; \text{Solving differential equation we get}$$

$$Q_{max} = Q_0 \; e^{-\frac{t}{\sqrt{LC}}} \; \text{therefore if} \; \; (Q_{max})_{L_1} = \frac{Q_0}{e^{\frac{t}{\sqrt{L_1C}}}} \; also \; (Q_{max})_{L_2} = \frac{Q_0}{e^{\frac{t}{\sqrt{L_2C}}}}$$

Since $L_1 > L_2$ therefore $(Q_{max})_{L_1} > (Q_{max})_{L_2}$.

Correct Option is (1)