JEE 2015 Physics

SelfStudy.in

8. A pendulum made of a uniform wire of cross sectional area A has time period T. When an additional mass M is added to its bob, the time period changes to T_M, If the Young's modulus of the material of the wire is Y then $\frac{1}{y}$ is equal (g = gravitational acceleration)

1.
$$\left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{A}{Mg}$$
 2. $\left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{Mg}{A}$ 3. $\left[1 - \left(\frac{T_M}{T} \right)^2 \right] \frac{A}{Mg}$ 4. $\left[1 - \left(\frac{T}{T_M} \right)^2 \right] \frac{A}{Mg}$

$$2. \left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{Mg}{A}$$

$$3. \left[1 - \left(\frac{T_M}{T}\right)^2\right] \frac{A}{Mg}$$

$$4. \left[1 - \left(\frac{T}{T_M}\right)^2\right] \frac{A}{Mg}$$

Answer:

We know that $T = 2\pi \sqrt{\frac{l}{a}}$

Due to additional mass assuming length of string changed to I_1

Therefore
$$T_M = 2\pi \sqrt{\frac{l_1}{g}}$$

$$\frac{T}{T_M} = \sqrt{\frac{\frac{l}{g}}{\frac{l_1}{g}}} \text{ or } \frac{T^2}{{T_M}^2} = \frac{l}{l_1}$$

$$\text{ or } \frac{{T_M}^2}{T^2} - 1 = \frac{l_1}{l} - 1$$

$$\text{ or } \left[\left(\frac{T_M}{T} \right)^2 - 1 \right] = \frac{\Delta l}{l} \to (1)$$

We know that Young modulus is given by

$$Y = \frac{\frac{F}{A}}{\frac{\Delta l}{l}} = \frac{mg}{A} \times \frac{l}{\Delta l}$$

$$or \frac{1}{Y} = \frac{A \times \Delta l}{mg \times l} \to (2)$$

Putting value of $\frac{\Delta l}{l}$ from equation (1) we get

$$\frac{1}{Y} = \left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{A}{mg}$$

Correct choice is option (1) $\left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{A}{ma}$