JEE 2015 Physics

SelfStudy.in

9. Consider a spherical shell of radius R at temperature T. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u=rac{\it U}{\it v} \propto \it T^4$ and pressure $P=\frac{1}{3}\left(\frac{U}{V}\right)$. If the shell now undergoes an adiabatic expansion the relation between T

(1)
$$T \propto e^{-R}$$
 (2) $T \propto e^{-3R}$

$$(2) T \propto e^{-3R}$$

(3)
$$T \propto \frac{1}{R}$$

(4)
$$T \propto \frac{1}{R^3}$$

Answer: Given $\frac{U}{V} \propto T^4$ and $P = \frac{1}{3} \left(\frac{U}{V} \right)$

We know that PV = nRT or $P = \frac{nRT}{V}$

thefore
$$\frac{nRT}{V} = \frac{1}{3} \left(\frac{U}{V} \right)$$

or
$$\frac{nRT}{V} \propto \frac{1}{3}T^4$$

$$or \ nR \propto \frac{1}{3} V T^3$$

or
$$VT^3 = constant$$
.

Volume of spherical shell containing ideal gas $V = \frac{4}{3}\pi R^3$

$$or \frac{4}{3}\pi R^3 T^3 = constant$$

$$or RT = constant$$

or
$$T \propto \frac{1}{R}$$

Correct option is (3)
$$T \propto \frac{1}{R}$$