JEE Advanced 2015 Physics

SelfStudy.in

18. For photo-electric effect with incident photon wavelength λ , the stopping potential is V₀. Identify the correct variation(s) of V₀ with λ and 1/ λ .

Answer: We know in photo electric effect, when energy incident part of this incident energy is used to eject the electron and rest part is used for providing kinetic energy.

[For detail refer http://selfstudy.in/HSEPhysics/EinsteinsPhotoElectricEquation.pdf]

Here $hv_0 = work \ function = constant \ (v_0 \ is \ thershold \ frequencey) = \phi_0.$ $eV_s = eV_0$, $V_s = V_0 = Stopping \ potential \ (potential \ to \ stop \ electron \ from \ emission)$

$$hv = hv_0 + eV_s$$

$$or h\frac{c}{\lambda} = hv_0 + eV_s$$

$$or h\frac{c}{\lambda} = \phi_0 + eV_0$$

or
$$V_0 = \frac{hc}{e\lambda} - \frac{\phi_0}{e}$$

Thus with the λ increase value of V_0 will fall and fall is not straight line bit convex towards origin resembling to graph (A).

If we plot 1/ λ along X –axis with the increase of 1/ λ , V_0 will increase, resembling to graph (C)

Correct Options are (A), (C).