

Potentiometers:

It is an instrument used to measure the emf of a cell or a battery. It can also be used to measure potential difference, current, internal resistance of a battery etc.

Construction: It consists of a long thin wire of uniform cross section throughout its entire length and having 1000 cm length. This wire is fixed on a wooden board in ten folds each of length100 cm, all parallel to one another as shown. The two free ends of a wire are connected with two terminal screws B1 and B2. Near the 10th wire a brass rod RR parallel to the last wire is fixed on the board with terminal screws at its two ends. By the side of the first wire a groove runs parallel to the first wire on the wooden board. The two legs of the jokey J rest on this groove and the third leg rests on the brass rod RR.

The edge of the wooden board near the first wire is slightly raised, on which a meter scale is fixed. The position of the jokey can be read from the scale.

Theory: A accumulator B of greater than the emf of the test call is connected through a key K and a rheostat across the potentiometer wire $B_1 \& B_2$ there by driving a current through the potentiometer wire and a potential difference is produced across the potentiometer wire. The accumulator B is known as driving cell.

The test cell is connected with its positive terminal of the driving cell and the negative terminal of the test cell is connected through a galvanometer to the jockey J. Let the jokey be passed at the point P, if the emf of the test cell C is greater than the potential difference V_{B1P} then current flows through the galvanometer wire CB_1PGC .

But if $E > V_{B1P}$ current flows along CGPB₁C.

If E = VB1P no current flows through the galvanometer and galvanometer shows null deflection.

Let i be the current flowing through the potentiometer wire by the driving cell.

 ρ =The resistance per unit length throughout the potentiometer wire.

 $I= B_1P$ = the length of the potentiometer wire up to the jockey at null deflection.

Therefore the potential difference across the wire B₁P

$$V_{B1P} = i\rho I$$

E = emf of the test cell.

At null deflection $E = i\rho l$ (1)

- (A) The current i flowing through the potentiometer wire can be measured by using an ammeter in the potentiometer circuit.
- (B) The resistance of the entire potentiometer wire can be measured by a P.O box and dividing it by 1000 we get ρ

Thus knowing i, ρ, I we can calculate E.

Uses of Potentiometer: (1) To compare the emf of two cells

If K1 is closed (K_2 is open) balance point is found by using C_1

$$E_1 = i\rho I_1$$

If K1 is opened and K2 is closed by measuring C2 balance point is found

$$E_2 = i\rho I_2$$

$$\frac{E_1}{E_2} = \frac{i\rho l_1}{i\rho l_2} = \frac{l_1}{l_2} \to (1)$$

Let C₂ be the standard cell i.e. A cell whose emf accurately known

(e.g. Cadmium cell E2=1.0183 Volt)

$$E_1 = \frac{l_1}{l_2} E_2$$
 \rightarrow Thus emf of the test cell C_1 can be calculated.

(2) Measurement of current by using potentiometer

Let V = P.D across the standard resistance R

$$V = IR \rightarrow (1)$$

(i) Closing $K_1(K_2 \text{ open })$ balance point is found

$$V = i\rho l_1 \rightarrow (2)$$

(ii) K_1 is opened, closing K_2 using the standard cadminum cell C balance point is found.

emf of the standard cell $E = i\rho l_2 \rightarrow (3)$

$$\frac{V}{E} = \frac{i\rho l_1}{i\rho l_2} = \frac{l_1}{l_2}$$

$$\frac{IR}{E} = \frac{l_1}{l_2}$$

$$I = \frac{E}{R} \frac{1_1}{l_2}$$

(3) To measure the internal resistance of a cell by using a potentiometer

(1) Key K['] is kept open no current flows through R i.e. The circuit of the test cell is an open circuit. The balance point is found by using the test cell C.

The emf of the test cell $E = i\rho l_1 \rightarrow (1)$

(2) The Key $K^{'}$ is closed a current flows through the circuit of the test cell producing a potential difference across AD

$$V = IR = \left(\frac{E}{R+r}\right)R \to (2)$$

Using the potential difference the balance point is found

$$V = i\rho l_2 \rightarrow (3)$$

Dividing equation (1) by equation(3)

$$\frac{\mathbf{E}}{\mathbf{V}} = \frac{\mathbf{i}\rho \mathbf{l}_1}{\mathbf{i}\rho \mathbf{l}_2} = \frac{l_1}{l_2}$$

$$\frac{E}{\left(\frac{E}{R+r}\right)R} = \frac{l_1}{l_2}$$

$$r = \frac{R(l_1 - l_2)}{l_2}$$