Relation Between Cp and Cv

Relation between Cp and Cv: To prove Cp-Cv = R

Let us consider 1 kg mole of a perfect gas enclosed in a cylinder fitted with a piston at constant pressure. Some heat is supplied to the gas externally the temperature as well as the volume of the gas rises.

![Diagram of gas in a cylinder with a piston and heat exchange]

Given:

\[P = \text{constant pressure applied on the piston} \]

\[\alpha = \text{Area of cross section of the piston} \]

\[\Delta T = \text{rise in temperature of the gas} \]

\[dx = \text{The distance AB through which the piston is pushed up} \]

\[dv = \alpha \, dx = \text{The increase in volume of the gas.} \]

Cp & Cv = Molar specific heat capacities of the gas at constant pressure and constant volume respectively.

Q be the heat supplied.

Although both the changes take place simultaneously but for convenience of calculation we assume them to be occurring in steps first the temperature changes and then volume changes.

Step 1: The volume is assumed to be constant and the temperature rises by dT and

Let Q1 be the heat required for that

\[Q_1 = 1. \, C_v. dT \quad \text{Joules} \quad (1) \]

Step II : The volume of the gas then increases by pushing the piston up by a distance dx against a force \(P \times \alpha \)

Let \(Q_2 = \text{energy required to do the mechanical work in pushing the piston up.} \)

\[Q_2 = P \times (\alpha \times dx) = P \times dv \quad \text{Joules} \quad (2) \]
Relation Between Cp and Cv

Since Q_1 and Q_2 are the part of the total heat supplied to the gas Q hence

$$ Q = Q_1 + Q_2 \quad (3) $$

But if we look at the change as a whole we find that Q heat rises the temperature of

1 kg mole of the gas by dT at constant pressure.

$$ Q = 1 \cdot C_p \cdot dT \quad (4) $$

Putting equation (1), (2) and (4) in (3)

$$ C_p dT = C_v dT + P dv \quad (5) $$

For perfect gas the equation is $PV = nRT$

For 1 kg Mole $n = 1$

$$ PV = RT \quad (6) $$

Differentiating with P constant

$$ P \frac{dv}{dT} = R \quad (6) $$

Putting equation (6) in (5) we get

$$ C_p - C_v = R \quad (7) $$

If M be the molecular weight of the gas and C_p & C_v are the ordinary specific heat of the gas at constant pressure and constant volume respectively then

$$ M C_p - M C_v = R $$

$$ C_p - C_v = \frac{R}{M} = \gamma $$
Relation Between Cp and Cv

Transformation of Heat: The state of a gas can be represented by three variables

(i) Pressure
(ii) Volume
(iii) Temperature

If one of these changes the state of the gas changes.

Isothermal Transformation: When the state of a gas is changed keeping its temperature constant the change is known as Isothermal change.

For Isothermal change $\Delta T = 0$

Generally slow changes are treated as Isothermal. In isothermal process the pressure and volume of a gas is related by $PV= constant$ when temperature is constant (Boyles law).

Adiabatic Process: When the state of a gas is changed so that no heat is allowed to leave the system or no heat is allowed to enter into the system from the surrounding i.e. exchange of heat energy between the system and the surrounding is zero the change is known as Adiabatic process. Thus if the system is thermally insulated from the surrounding the change is adiabatic $\Delta Q=0$. Generally sudden changes are treated as adiabatic.

Relation between pressure, volume and temperature of a gas in adiabatic transformation:

Let us consider 1 kg mole of a perfect gas enclosed in a cylinder fitted with a piston. If some heat is supplied to the gas the temperature as well as volume of the gas increases.

Let $\Delta Q =$ Amount of heat supplied to the gas

$P =$ Pressure applied on the piston.

$\alpha =$ Area of cross section of the piston

$dT =$ Rise in temperature of the gas

$dx =$ AB = The distance through which the piston is pushed up

$dv =$ α $dx =$The increase in volume of the gas

Cp & $Cv =$ Molar specific heat capacities of the gas at constant pressure and constant volume respectively.

Although both the changes take place simultaneously but for convenience of calculation we assume them to be occurring in steps.

Step 1: Let the volume remain constant and the temperature rises by dT only and let $Q1$ be the amount of heat absorbed by the gas for this change
Relation Between Cp and Cv

Q1 = 1.Cv.dT Joules → (1)

Step II: Temperature remains constant at T + dT and the volume of the gas increases by dv

Let Q2 = Amount of heat energy absorbed by gas in doing the mechanical work, in pushing the piston up by a distance dx against a force (P × α)

\[\therefore Q_2 = (P \times \alpha)dx = P \times (\alpha \times dx) = Pdv \] Joules → (2)

Since both parts of the heat absorbed are obtained from the supplied heat

\[\Delta Q = Q_1 + Q_2 \]
\[\Delta Q = C_v \, dT + PdV \]

For adiabatic transformation \(\Delta Q = 0 \)
\[C_v \, dT + PdV = 0 \] → (3)

For a perfect gas \(PV = nRT \) (here \(n = 1 \))
\(PV = RT \)

Differentiating : \(PdV + VdP = RdT \)
\[\frac{dT}{dT} = \frac{PdV + VdP}{C_p - C_v} \] → (4)

Putting equation (4) in (3):
\[C_v \frac{PdV + VdP}{C_p - C_v} + PdV = 0 \]
\[C_v Vdp + C_p PdV = 0 \]

Dividing both sides by \(C_p PV \)
\[\frac{dP}{P} + \frac{C_p}{C_v} \frac{dV}{V} = 0 \]
\[\frac{dP}{P} + \gamma \frac{dV}{V} = 0 \quad \text{Where} \quad \gamma = \frac{C_p}{C_v} = \text{Constant} \]

Integrating both sides:
\[\int \frac{dP}{P} + \int \gamma \frac{dV}{V} = 0 \]
\[\log P + \gamma \log V = \text{constant} \]
\[\log PV^\gamma = \text{constant} \]
Taking antilog \(PV^\gamma = e^\text{constant} = \text{constant} \)
\(PV^\gamma = \text{constant} \) → (5)

We know that \(PV = RT \)
\[P = \frac{RT}{V} \] → (6)
\[V = \frac{RT}{P} \] → (7)

From equation (5) & (6)
\[\frac{RT}{V} V^\gamma = \text{constant} \]
\[TV^{\gamma} = \text{constant} \] → (8)

From equation (5) and (7)
\[P \left(\frac{RT}{P} \right)^\gamma = \text{constant} \]
\[T^\gamma P^\gamma = \text{constant} \] → (9)