Stefan's Law

Stefan's law: When a body is at a temperature higher than that of surrounding radiation loss take place. The amount of energy lost due to radiation per second per unit surface of a given body is proportional to the difference of fourth power of temperature in absolute scale of the body and the surrounding.

$$U \propto \left[T^4 - T_0^4 \right]$$

$$U = \sigma \left[T^4 - T_0^4 \right]$$

Where T_0 and T are the temperature of the surrounding and the body.

U = Amount of energy lost due to radiation per unit surface area per second.

 σ = constant of proportionality known as Stefan's constant

$$\sigma = \frac{U}{[T^4 - T_0^4]} \text{ Joule m}^{-2} S^{-1} K^{-4}$$
$$\sigma = 1.455 \times 10^3$$