Wheatstone Bridge-Kirchhoff's Law

Using Kirchhoff's law we now find the condition for null deflection in a Wheatstone bridge

Four resistances P, Q, R and S are joined end to end to form a closed circuit. These close networks of conductors form a closed circuit. This close network of conductors is known as Wheatstone bridge. Between any pair of opposite junctions say A & C a battery is connected and between the other pair of opposite junctions a galvanometer is connected. We assigned the current flowing in the different branches from the logical consideration.

Given: G = The resistance of the galvanometer

Let i_1, i_2, i_3, i_4 & i_g be the current flowing through the branches of resistance P, R, Q, S and G respectively.

Applying Kirchhoff's first law:

(1) At the point C:

$$\sum i = i - i_1 - i_2 = 0 \text{ or } i_2 = i - i_1 \rightarrow (1)$$

(2) At the point B:

$$\sum i = i_1 - i_3 - i_g = 0 \text{ or } i_3 = i_1 - i_g \rightarrow (2)$$

(3) At the point D:

$$\sum i = i_2 + i_g - i_4 = 0 \text{ or } i_4 = i - i_1 + i_g \rightarrow (3)$$

Applying Kirchhoff's second law:

In closed mesh CBDC:

$$\mathbf{i}_1 P + \mathbf{i}_g G - \mathbf{i}_2 R = 0$$

Putting equation(1):
$$i_1P + i_gG - (i - i_1)R = 0$$

$$or(P+R)i_1+i_gG-iR=0 \rightarrow (4)$$

Wheatstone Bridge-Kirchhoff's Law

(ii) In closed mesh BADB

$$i_3Q - i_gG - i_4S = 0 \rightarrow (5)$$

Putting equation(2) in equation (5)

$$(i_1 - i_g)Q - i_gG - (i - i_1 + i_g)S = 0$$

or $i_1(Q + S) - i_g(Q + G + S) - iS = 0 \rightarrow (6)$

To eliminate i_1 from the equations multiplying equation (4) by (Q+S) and (6) by (P+R) and substracting

$$i_1(Q+S)(P+R)+i_gG(Q+S)-iR(Q+S)=0$$

$$i_1(Q+S)(P+R)-i_g(P+R)(Q+G+S)-iS(P+R)=0$$

$$i_g[G(Q+S)+(Q+S+G)(P+R)]-i[R(Q+S)-S(P+R)]=0$$

$$i_g = \frac{i(RQ - SP)}{G(Q + S) + (Q + S + G)(P + R)} \rightarrow (6)$$

From equation (6) we can find the current flowing the galvanometer. For null deflection ig=0 from equation (6) ig=0 only if (RQ-PS) = 0 or P/Q=R/S